Strongly Correlated Electron Materials: Dynamical Mean-Field Theory and Electronic Structure

نویسنده

  • Antoine Georges
چکیده

These are introductory lectures to some aspects of the physics of strongly correlated electron systems. I first explain the main reasons for strong correlations in several classes of materials. The basic principles of dynamical mean-field theory (DMFT) are then briefly reviewed. I emphasize the formal analogies with classical mean-field theory and density functional theory, through the construction of free-energy functionals of a local observable. I review the application of DMFT to the Mott transition, and compare to recent spectroscopy and transport experiments. The key role of the quasiparticle coherence scale, and of transfers of spectral weight between lowand intermediate or high energies is emphasized. Above this scale, correlated metals enter an incoherent regime with unusual transport properties. The recent combinations of DMFT with electronic structure methods are also discussed, and illustrated by some applications to transition metal oxides and f-electron materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Impurity Models as Reference Systems for Strongly Correlated Materials: The Road from the Kondo Impurity Model to First Principles Electronic Structure Calculations with Dynamical Mean-Field Theory

Dynamical mean field theory (DMFT) relates extended systems (bulk solids, surfaces and interfaces) to quantum impurity models (QIM) satisfying a self-consistency condition. This mapping provides an economic description of correlated electron materials. It is currently used in practical computations of physical properties of real materials. It has also great conceptual value, providing a simple ...

متن کامل

Electronic structure calculations with dynamical mean-field theory

A review of the basic ideas and techniques of the spectral density-functional theory is presented. This method is currently used for electronic structure calculations of strongly correlated materials where the one-electron description breaks down. The method is illustrated with several examples where interactions play a dominant role: systems near metal-insulator transitions, systems near volum...

متن کامل

Surprises in Correlated Electron Physics

The exceptional properties of strongly correlated electron systems have fascinated physicists for several decades already [1–9]. New correlated electron materials and unexpected correlation phenomena are discovered every year. Often the properties of those systems are influenced by disorder. Unfortunately, real materials and even model systems with strong electronic correlations and disorder ar...

متن کامل

First-principles calculations of the electronic structure and spectra of strongly correlated systems:dynamical mean-field theory

A recently developed dynamical mean-field theory in the iterated perturbation theory approximation was used as a basis for construction of the ”first principles” calculation scheme for investigating electronic structure of strongly correlated electron systems. This scheme is based on Local Density Approximation (LDA) in the framework of the Linearized Muffin-Tin-Orbitals (LMTO) method. The clas...

متن کامل

Electronic Structure of Strongly Correlated Materials: towards a First Principles Scheme

We review a recent proposal of a first principles approach to the electronic structure of materials with strong electronic correlations. The scheme combines the GW method with dynamical mean field theory, which enables one to treat strong interaction effects. It allows for a parameter-free description of Coulomb interactions and screening, and thus avoids the conceptual problems inherent to con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004